Challenges in Banking Research Session I: Issues in Securitization

Comments by Rafael Repullo

Basel Committee Research Task Force Workshop Banco de España, 28-29 May 2009

Paper 1

Ingo Fender (BIS) and Janet Mitchell (NBB)

"Incentives and Tranche Retention in Securitization"

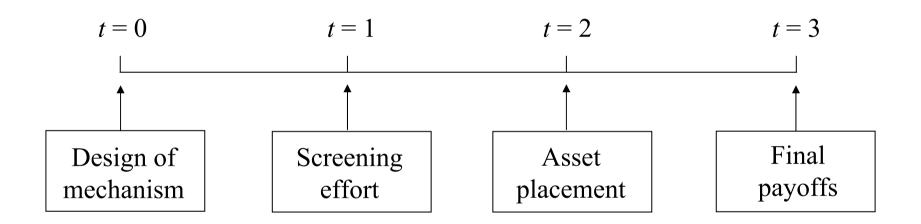
Paper 2

John Kreiner (FRBSF) and Elizabeth Laderman (FRBSF)

"Mortgage Loan Securitization and Relative Loan Performance"

Common theme

- Moral hazard aspects of securitization
 - → Screening incentives of originators
- Theoretical perspective: Fender and Mitchell
- Empirical perspective: Krainer and Laderman


Issues

- What is the optimal way to securitize a portfolio?
 - → Focus on screening incentives of originator
- Three retention mechanisms
 - → Equity tranche
 - → Mezzanine tranche
 - → Vertical slice

Main results

- There is no optimal mechanism
 - → Depends on effect of screening on return distributions
- Retaining equity tranche may be dominated
 - → When probability and severity of downturns is high

Time line

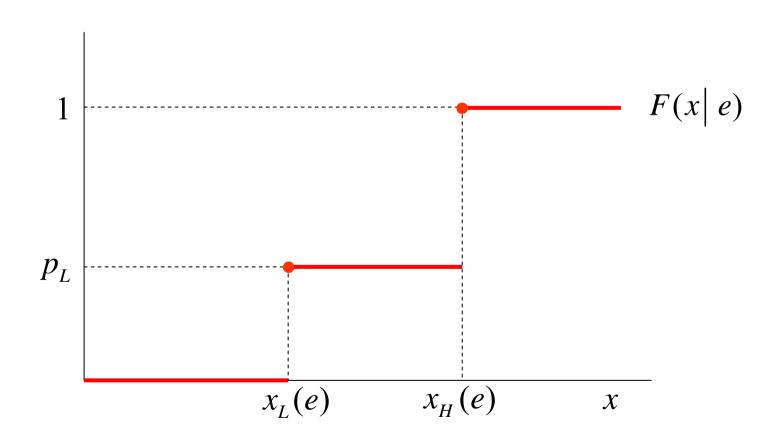
Setup

- Unit portfolio of loans with correlated defaults
 - \rightarrow Portfolio return $x \in [0, R]$
- General securitization mechanism

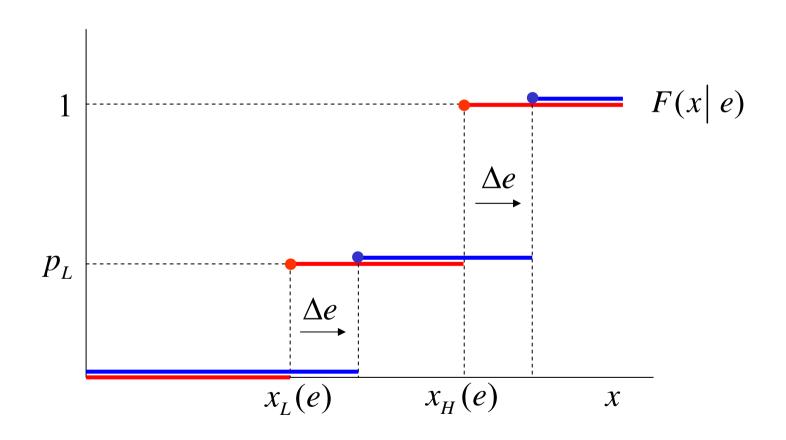
$$z: [0,R] \rightarrow [0,R]$$
 with $0 \le z(x) \le x$

- $\rightarrow z(x)$ retention of originator
- Screening effort e with cost c(e) and FSD shift in cdf F(x|e)

$$\frac{\partial F(x \mid e)}{\partial e} \le 0$$


• Securitization benefits $\Omega > 1$

Special retention mechanisms


- Holding entire pool z(x) = x
- Securitizing entire pool z(x) = 0
- Vertical slice z(x) = vx with 0 < v < 1
- Equity tranche $z(x) = \max\{x d_0, 0\}$ with $0 < d_0 < R$
- Mezzanine tranche

$$z(x) = \min \{ \max \{x - d_1, 0\}, d_2 \} \text{ with } 0 < d_1 < d_2 < R$$

Special return distribution

Special return distribution

Optimal mechanism design

• Choice of effort (for given z(x))

$$\Pi_{z(x)} = \max_{e} \left[\int_{0}^{R} z(x) \ dF(x \mid e) - c(e) \right] \rightarrow e_{z(x)}$$

• Buyer's payoff

$$S_{z(x)} = \int_0^R (x - z(x)) dF(x | e_{z(x)})$$

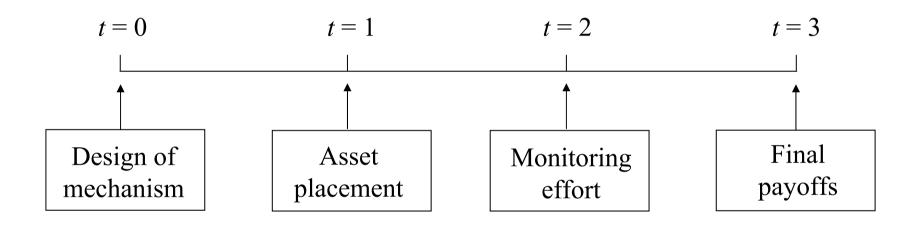
Choice of mechanism

$$\max_{z(x)} \left[\Pi_{z(x)} + \Omega s_{z(x)} - 1 \right]$$

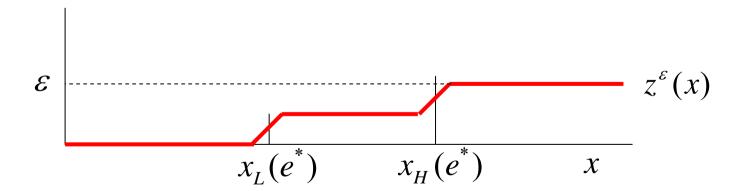
Trade-offs

- Higher screening effort e (for a given z(x))
 - \rightarrow Higher cost of effort c(e)
 - → Higher value of securities retained
- Higher securitization of portfolio (lower z(x))
 - → Lower incentives to exert effort
 - \rightarrow Higher value of portfolio for originator (since $\Omega > 1$)

- It is very difficult to obtain general results
 - → Even if we restrict attention to special securities
- Is there any rationale for the specific return distribution?


- Return distribution implies that *e* is observable ex post
 - \rightarrow Just invert $x_L(e)$ or $x_H(e)$
- Moral hazard problem could be avoided
 - → Write contract contingent on effort

- Is it private or social optimality?
 - \rightarrow What is behind the assumption that $\Omega > 1$?
 - → What if it were some form of regulatory arbitrage?
 - → Need more discussion on this!


- There is no discussion of differences between
 - → Optimal securitization design under moral hazard
 - → Optimal financial structure under moral hazard
- Is equity retention optimal under MLRP?
 - \rightarrow Does the result in Innes (1990) apply?
 - → Probably yes!

- Is it ex-ante screening or ex-post monitoring?
 - → Exactly same results with alternative time line

Alternative time line

- For given return distribution
 - → Optimal contract can be arbitrarily approximated
- Let e^* denote first-best level of effort
- Define (monotonic) contract $z^{\varepsilon}(x)$

Summing up

- Topic is very interesting and policy relevant
- Very difficult to get analytical results (except under MLRP)
- Unclear that one can rely on numerical solutions
- Need to think more about private vs. social benefits
- Need to think more about screening vs. monitoring costs

Issues

- Which loans get securitized?
- What relative performance of securitized vs. retained loans?

Data

- Mortgage loans originated in California, 2000-2007
- Observed in October 2008
- Matched with information on borrowers and on lenders
- Both non-agency securitized and retained loans
- Both purchase and refinance loans

Empirical strategy

- Regression discontinuity model to identify
 - Jumps in securitization rate at FICO scores
 - Jumps in delinquency rate at FICO scores
- Probit model to identify
 - Determinants of securitization rate
 - Determinants of delinquency rate (incl. securitization)

Regression discontinuity results

- Focus on purchase loans
- Significant increase in securitization rate at 620 FICO
- Significant increase in delinquency rate at 600 & 620 FICO
 - → Only for securitized loans
 - \rightarrow Results consistent with Keys et al. (2010)
 - → Less screening for loans more likely to be securitized

Probit results

- Focus on purchase loans
- Securitization is more likely for
 - Large (jumbo) loans → Riskier loans?
 - − Fixed rate mortgages → Safer loans?
 - Low loan-to-value (LTV) \rightarrow Safer loans?
 - Low residual income \rightarrow Riskier loans?
 - Smaller and less capitalized lenders
- FICO score is <u>not</u> significant

Probit results

- Focus on purchase loans
- Delinquency is more likely for
 - Large (jumbo) and subprime loans
 - Adjustable rate mortgages (ARM)
 - High loan-to-value (LTV)
 - Low residual income
 - Low FICO score
- Securitized dummy is <u>not</u> significant

- Too little information on data
 - → Give descriptive statistics
- Distinguish loans by origination date
 - → Results may be sensitive to origination date

- Is delinquency status defined at observation date?
 - → Time since origination is likely to be important

- Are agency securitized loans excluded from sample?
 - \rightarrow If so, why?

- Determinants of securitization rates
 - → Add a 620 FICO score dummy
 - → For consistency with regression discontinuity results
- Results on risk characteristics are pretty ambiguous
 - → Maybe return characteristics are also important
 - → ARM retained because they are more profitable?

- Determinants of delinquency rates
 - → Securitized dummy has wrong sign (but insignificant)
 - → Theory predicts that it should be positive
 - → Less screening (or monitoring) for securitized loans
- But securitized dummy is <u>not</u> exogenous
 - → Should be treated as endogenous explanatory variable
 - → Use selection model with two endogenous regimes

Summing up

- Very interesting new data
- Somewhat disappointing results
- Queries about data
 - → Time since origination
 - → Delinquency status
 - → Agency securitized loans
- Queries about variables in delinquency regression
 - → Securitized dummy should be treated as endogenous